Pyrite Collaborative Update

Nanocrystal Synthesis and Thin Films from Molecular Inks

Goals For Pyrite Research

- Scalable Synthesis of Pyrite Nanocrystals
 - Gram Scale Synthesis of Pyrite NCs
 - Non-Chlorinated Solvent
 - Halogen-Free Synthesis
 - Transition to film production using scaled Inks
- Molecular Films
 - High density, connected films with large grains and variable thickness

Standard Law Group FeS₂ NC Synthesis

Standard Law Group FeS₂ NC Synthesis

- 2.5mmol FeCl2*4H20 in 25mL DDA
- (Verified with FeCl2 anhydrous)
- 400mg S in 10ml PE
- Dg @ 75C 1hr Inject Sulfur to Iron flask @220C and cook for 4 hours.
- Crash with ethanol redisperse with Chloroform and sit overnight.
- Next Day add xanthate and wash like normal after 45 minutes.

Pyrite NC Scale Up Reaction

- (1.2g FeCl₂ 4H₂0 / 86g ODA) (1.6g S/40ml PE)
- Dg @ 110 C / 85C
- Yield of Synthesis
 - 676mg Soluble
 - 74mg Insoluble
 - Soluble defined as still in solution after 5mins @ 4.4krpm
 - 90.1% Soluble Yield

Pyrite Scale Up Synthesis

Pyrite Scale Up Synthesis

- Iron (III) Acetylacetonate molecular ink is coated onto a glass slide
- The layer is then baked in air at 350 C for 30 minutes to form an amorphous iron oxide layer
- This process can be repeated to build varying thicknesses of films
- The final film is then converted to pyrite with either H₂S or S₈ annealing

3 Lays	ers		N.	
1/10/2011 10:35:21 PM	HV WD 10.0 kV 10.4 mm	mag ⊞ HFW 50 000 x 2.98 μr	spot ⊢ n 2.5 Sea	— 500 nm — n Quanta FESEM

H₂S Annealing

CPS

S₈ vs H₂S Annealing

S₈ vs H₂S Annealing

Future Work

- Pyrite NCs soluble in non-chlorinated solvent.
 - Eventually move away from synthesis involving halogen precursor.
 - Proceed to film and device work once metrics are met to use the NC inks.
- Molecular Ink films need electrical and optical characterization for multiple thicknesses.
 - Devices will ultimately determine optimal thickness for molecular ink thin films.